Localic completion of uniform spaces
نویسنده
چکیده
We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from X ×X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform space, the localic completion lifts its generalised uniform structure to a point-free generalised uniform structure. This point-free structure induces a complete generalised uniform structure on the set of formal points of the localic completion that gives the standard completion of the original gus with Cauchy filters. We extend the localic completion to a full and faithful functor from the category of locally compact uniform spaces into that of overt locally compact completely regular formal topologies. Moreover, we give an elementary characterisation of the cover of the localic completion of a locally compact uniform space that simplifies the existing characterisation for metric spaces. These results generalise the corresponding results for metric spaces by Erik Palmgren. Furthermore, we show that the localic completion of a symmetric gus is equivalent to the point-free completion of the uniform formal topology associated with the gus. We work in Aczel’s constructive set theory CZF with the Regular Extension Axiom. Some of our results also require Countable Choice.
منابع مشابه
Localic completion of generalized metric spaces II: Powerlocales
The work investigates the powerlocales (lower, upper, Vietoris) of localic completions of generalized metric spaces. The main result is that all three are localic completions of generalized metric powerspaces, on the Kuratowski finite powerset. Applications: (1) A localic completion is always open, and is compact iff its generalized metric space is totally bounded. (2) The Heine-Borel Theorem i...
متن کاملLocalic Completion of Quasimetric Spaces
We give a constructive localic account of the completion of quasimetric spaces. In the context of Lawvere’s approach, using enriched categories, the points of the completion are flat left modules over the quasimetric space. The completion is a triquotient surjective image of a space of Cauchy sequences and can also be embedded in a continuous dcpo, the “ball domain”. Various examples and constr...
متن کاملCompleteness of Quasi-uniform and Syntopological Spaces
In this paper we begin to develop the filter approach to (completeness of) quasiuniform spaces, proposed in [8, Section V]. It will be seen that this permits a more powerful and elegant account of completion to be given than was feasible using sequences or nets [8]. Just as in the previous version [8], we find that received notions concerning convergence need to be revised and reformulated to d...
متن کاملSobriety and Localic Compactness in Categories of L-Bitopological Spaces
The notions of L-sobriety and L-spatiality are introduced for the category L-BiTop of Lbitopological spaces. Such notions are used to extend the known adjunction between the category L-Top of L-topological spaces and the category Loc of locals to one between the category L-BiTop and BiLoc. Also, the concepts of localic regularity and localic compactness are introduced in the mentioned category.
متن کاملQuantifying Completion
Approach uniformities were introduced in Lowen and Windels (1998) as the canonical generalization of both metric spaces and uniform spaces. This text presents in this new context of “quantitative” uniform spaces, a reflective completion theory which generalizes the well-known completions of metric and uniform spaces. This completion behaves nicely with respect to initial structures and hyperspa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2017